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The Flexible Job Shop Scheduling Problem (FJSP) is an extension of the classical Job Shop
Scheduling Problem (JSP) that allows the operation of a job to be operated on one machine selected
from a group of capable machines, and this additional requirement to determine the assignment of
operations on proper machines makes the FJSP more complicated than the JSP. This paper discusses the
implementation of two adapted differential evolution (DE) algorithms for minimizing makespan in the FJSP.
The modified algorithms aim to enhance the efficiency of the original DE by dynamically balancing the
exploration and exploitation ability and avoiding the common problem of premature convergence. The
first algorithm, called DE with a subgroup strategy, allows the DE population to simultaneously perform
different mutation strategies in order to exploit their various strengths and compensate for the weaknesses
of each individual strategy in order to enhance overall performance. The second algorithm, called DE with
a switching strategy, allows the entire DE population to change the search behavior whenever the
solutions do not improve. As a consequence, the chance of getting trapped at a local optimum is
reduced. The performances of two adapted DE are evaluated based on a set of benchmark problems and
compared with the results obtained from the original DE. The experiment results show that both adapted
DE algorithms generate results that are competitive with the original DE.
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1. Introduction

The classical job shop scheduling problem
(JSP) is well-known as one of the most difficult
scheduling models and has been the subject of
many research efforts for several decades.
Although much research work has improved and
enhanced the efficiency of solution algorithms for
the JSP, the development of efficient solution
methods for the large-scale flexible job shop
scheduling problem (FJSP) has recently captured
the interest of many researchers.

The FJSP is an extension of the classical JSP,
which allows an operation of a job to be
processed on one machine selected from a set of
capable machines. In addition, with the FJSP, some
machine stations are allowed to be visited more
than once or not at all. Thus, the FJSP is more
complex than the JSP due to an additional
requirement to determine the assignment of
operations on the machines. Generally, the
problems of the FJSP can be decomposed into
two sub-problems: 1) a routing sub-problem,
assigning each operation to a machine selected
from a set of capable machines to meet the
process requirements; and 2) the scheduling sub-
problem, sequencing the assigned operations on
each machine in order to obtain a feasible
schedule which minimizes the objective function.
The FJSP has been proven to be NP-hard, and
therefore  heuristics approaches are more
preferable than traditional exact algorithms for
finding high-quality or near-optimal solutions for
large-scale problems within a reasonable time.

There is much less literature on the FJSP
than on the JSP. However, during the past two
decades, metaheuristics have been received
increased attention from researchers for solving the
FJSP. Typically, the approaches for solving the FJSP
are classified into hierarchical and integrated

approaches. The hierarchical approach

independently considers the assignment of
operations to machines and the sequencing of
operations on the machines, whereas the
assicnment and sequencing of operations are
considered  simultaneously in the integrated
approach. The early research on the FJSP was
focused on neighborhood-based metaheuristics
such as Tabu Search (TS) and Simulated Annealing
(SA). Brandimarte [1] introduced a hierarchical
approach which combined some dispatching rules
and TS in order to minimize makespan in the FJSP.
Hurink et al. [2] represented the FJSP as a
disjunction graph model and proposed a
hierarchical TS-based approach for minimum
makespan criteria. Dauzere-Peres and Paulli [3]
developed a new disjunction graph model and
proposed an integrated approach based on TS to
solve the FJSP. Mastrolilli and Gamberdella [4]
proposed two new neighborhood functions to
improve the performance of Dauzere-Peres and
Paulli’s approach. Najid et al. [5] presented a
modified SA with a different disjunction graph and
neighborhood function in order to minimize
makespan in the FJSP. Although neighborhood-
based metaheuristics have been successfully
applied to solving the FJSP, the performance of
these algorithms highly depends on the initial
solution and more vulnerable to being trapped
into local optima. Consequently, most recent
research efforts have been devoted to developing
population-based metaheuristics or evolutionary
algorithms such as the Genetic Algorithm (GA), Ant
Colony Optimization (ACO), and Particle Swarm
Optimization (PSO). Kacem et al. [6, 7] presented a
hierarchical approach for the multi-objective FIJSP
by applying the GA controlled by the assignment
model which was generated by the approach of
localization. Zhang and Gen [8] proposed a
multistage operation-based GA (moGA) to solve the
multi-objective FJSP. Xia and Wu [9] proposed a

hybrid PSO and SA to solve the multi-objective
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FJSP based on a hierarchical approach where the
PSO was used for operation assignment and then
the SA was implemented for operation sequencing.
Zribi et al. [10] proposed a new hierarchical
method using the localization method, and TS and
hybrid GA to enhance the quality of solutions. Gao
et al. [11] developed a hybrid algorithm for the GA
and bottleneck shifting for the multi-objective FJSP
in order to fully exploit the global search ability of
the GA and the local search ability of the
bottleneck shifting heuristic. Li et al. [12] presented
an effective hybrid TS (HTSA) with adaptive rules to
solve the multi-objective FJSP.

Recently, an evolutionary algorithm called
differential evolution (DE) has received attention
from many researchers due to its advantage of
having relatively few control variables but
performing well in search ability and convergence.
Although  the DE for

combinatorial optimization are still limited, some

applications of the

attempts have been made to apply DE for solving
scheduling problems. Godfrey et al. [13] applied DE
to the flow shop scheduling problem. Quan et al.
[14] proposed a discrete DE algorithm (DDE) for the
permutation flow shop with the makespan criteria.
Wang et al. [15] proposed a self-adaptive DE (SDE)
to improve the global convergence property and
to avoid the premature convergence ability of the
conventional DE. Liu et al. (2009) extended the
application of the DDE to the JSP with special
mutation and crossover operators to deal with the
discrete variables in the JSP. Warisa and Voratas
[16] presented a one-stage DE (1ST-DE), an
adaptation of the classical DE, to minimize the
makespan for the JSP and the experiments showed
that the 1ST-DE was quite competitive with the
1ST-PSO algorithm both in terms of solution
quality and solution time. The 1ST-DE was then
further applied to minimize the makespan in the
FJSP [17]. Later, Warisa and Voratas [18] extended
the 1ST-DE to enhance the efficiency of the search

by dynamically balancing the exploration and
exploitation ability of the DE and avoiding the
problem of premature convergence. These two
new DE algorithms were applied to minimize two
single objective functions: makespan and total
weighted tardiness in the JSP. The numerical
results demonstrated that the extended DE
algorithms yielded promising results while using
shorter computing time and fewer numbers of
function evaluations compared to those obtained
from state-of-the-art PSO algorithms.

This paper discusses the effectiveness of
two modified DE algorithms proposed in [18] in
order to minimize the makespan in the FJSP. The
remainder of this paper is organized as follows. The
problem formulation and description of the FJSP
are described in section 2. Section 3 describes the
classic DE algorithm. Section 4 describes an
application of the two modified DE algorithms for
the FJSP. The experimental results are reported in
section 5. Finally, the conclusion and suggestions

for further research are provided in section 6.

2. Problem Description

Similar to the classic JSP, the FJSP schedules
a set of n jobs on a set of m machines in order to
optimize one or more objectives. However, the
problem with the FJSP is that it is more difficult
than the JSP because it requires the proper
assicnment of each job operation to a machine
from a set of capable machines. With the FJSP, the
set of machines is denoted as M, M = {M,, M,,...,
M,}. Each job /i consists of a sequence of n;
operations. Each operation O, (i=12,,n:j=
1,2,.., n) of job i needs to be processed on one
machine Mk out of a set of given compatible
machines M;;. Each machine is independent from
others. The machine set up time and the transfer
time between operations are negligible. Machine

breakdown is not considered and the pre-emption
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is not allowed in this problem. Each machine can
process at most one operation at a time, and there
are no precedence constraints among operations
of different jobs. The goal is to determine both the
assiscnment and sequence of operations on the
machines and to specify the starting time and
ending time of each operation in order to optimize

certain objectives subjected to constraints.

In this paper, the objective of the model
was to minimize the makespan. The notation and

variables used in the FJSP model are listed as

follows:

n : total number of jobs

m total number of machines

n; total number of operation of job i
O, - thejth operation of job i

M;; . the set of available machines for the

)
operation O;;

Minimization of makespan:

Pk : processing time of O;; on machine k

Sk 1 start time of operation O;; on machine k

C; : completion time of operation O;;

ih : indexofjobs; ih=1,2.,n

k . index of machines , k=1,2,..,m

j¢ : Index of operation sequence;

je=1,2,..,n;

H : A large positive number

Xy« = 1if operation Oy is assigned to machine k
= 0 otherwise

Yk = 1 if operation O;; preceded O on

machine k

= 0 otherwise

The mathematical model of the problem is

formulated as follows:

f : minimize max{C,, } (1)
Subjected to constraints:

Ci,j 'Ci,j-lZE,j,kXi,j,k:j:2:~-vni vi, j (2)
L-Cow+H(1-y L Ver(1exc L JeH(1-x, L st V(i Q)i k @
0 L] Lok i, .k gk gk

Coy = CyH (Yigu ) ¥ H (X )+ H (1- Xy ) 2, v(i.j).(ih i)k @
ZXi,j,k =1 vi, | (5)
s . >0 vi, j (6)

]

The precedence constraint in equation (2) ensures
that an operation of job i must be processed to
completion on machine k before the succeeding

operation of job i. Equations (3) and (4) present

the conflicting constraints to guarantee that each
machine can process only one job at a time.
Equation (5) states that only one machine can be
selected from the set of capable machines for

each operation.
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3. One-Stage Differential Evolution

(1ST-DE)

As mentioned earlier, the 1ST-DE, proposed
in [16] is a modification of the original DE. In the
1°" -DE, the initial population was randomly
generated, similar to other population-based
random searches. In order to obtain a trial vector,
a mutation operation was carried out in the same
way as with the classic DE. However,
the 1ST-DE uses the exponential crossover
operation. In the exponential crossover operation,
a randomly-picked dimension index § is first
indicated, and then each dimension value of the
trial vector is inherited from its mutant vector, V,,,
as long as u; < C,. The first time that u; > C,, all the
remaining dimension value are taken from the
target vector, X,-,g,.
number of consecutive dimension indexes on

An integer, L indicates the

which crossover is performed. The exponential

crossover scheme is expressed in equation (7).

jig T | Xjiq Otherwise

7. = {v”,g if j=(8)D(5+1)D,...(s+L-1)D (7)

The angular brackets < >D denote a modulo
function with modulus D (Storn and Price [19]). The
DE variant used in 1ST-DE was denoted as
DE/rand/1/exp.

3.1 Adapted DE

This study applied the two modified DE
algorithms proposed in [18]. The algorithms aimed
to improve the efficiency of the original DE by
dynamically balancing exploration and exploitation
ability and avoiding the common problem of
premature convergence. In the modified DE, a new
local mutation operator, named as DE/localbest/1,
was introduced and embedded in the algorithms
to promote exploitation in different areas of the

search space. The procedures of the two modified

DE algorithms are explained in the following
sections.

3.1.1 DE with subgroup strategy

The DE with a subgroup strategy allows the
DE population to simultaneously perform different
mutation strategies in order to extract the strengths
of various strategies and compensate for the
weaknesses of each individual strategy. The
purpose of this algorithm is to enhance the overall
performance and increase the robustness of the
search as a whole. In this algorithm, the DE
population was divided into three sub-groups with
information sharing across other groups. The DE
population in each group executed a particular
search strategy with distinct mutation strategies.
The population in the first, second, and third group
performed the mutation scheme of DE/rand/1,
DE/best/1, and DE/localbest/1 respectively. As a
result, the combination of multiple search
strategies was embedded in one population in
order to enhance the overall performance.

3.1.2 DE with switching strategy

The DE with a switching strategy aims to
dynamically — balance the exploration and
exploitation ability of the search and to help the
DE avoid becoming trapped at a local optimum
through the use of multiple mutation strategies.
The concept of this algorithm is to allow the entire
DE population changes its search behavior
whenever the solutions do not improve. The
algorithm mutation
DE/rand/1 and DE/localbest/1. At the beginning,

the emphasis is on global exploration (DE/rand/1)

employs  two strategies:

in order to let all of the vectors explore the search
space vigorously. After some predefined iterations,
if the solution is not improved, it implies that it
might be trapped at a local optimum, and the
search will place new emphasis on the local
(DE/localbest/1)
neighborhood. Again, if the solution is not

exploitation of each vector

improved after some predefined iterations, the
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|search will be switched back to the first mutation
strategy. Consequently, the chance of getting
trapped at a local optimum is reduced since the
mutation strategies change the movement of the

search.

4. Implementation of the DE to the FJSP

In order to apply the DE to a scheduling
problem, the solution vectors in the DE need to be
transformed into a schedule. A solution of the
problem can be represented using a vector with
dimensions equal to the total number of
operations required for all jobs. The procedures of
solution mapping of the DE for the FJSP used in
this study are explained using an example of two

jobs and three machines, as noted in Table 1.

Table 1 FJSP with 2 jobs and 3 machines

Processing time
Job oy
’ M1 M2 M3

1 O, 3 4

O;. - 1 2

O3 3 6 -
2 O, 8 7 9

02,2 - 2 3

According to the example in Table 1, job 1
and job 2 consist of three and two operations
respectively. Therefore, the total number of
dimensions (d) was set to be equal to the total

number of operations of all jobs, which was 5.

Dimension d 1 2 3 q 5
Dimension value | 0.25 | 0.89 | 0.30 [0.38| 0.67

Figure 1 Random key representation

Figure 1 illustrates the random key

representation encoding scheme [20], where each

value in a vector dimension was initially generated
with a uniform random number in the range [0, 1].
Next, based on the number of operations of
each job, this study adopted the permutation
of n-repetition of n jobs [21] with a sorting list rule
to determine the sequence of operations,
as shown in Figure 2. The advantage of this
of this

representation always provides a feasible schedule.

approach is that any permutation

Note that this approach has been successfully
applied to the JSP in [22] and [23].

Dimension d 1 3 q 5 2

Dimension value 0.25 | 0.30 | 0.38 | 0.67 | 0.89

Job, Operation (ij) | 1,1 1,2 13121 |22

Figure 2 m-repetition of job number permutation

and operation-based representation

As mentioned earlier, in the FJSP, an
operation is allowed to be processed by one
machine selected from a group of capable
machines. Therefore, after a sequence of
operations is determined, an operating machine for
each operation must also be decided. In this study,
the machine assigned for each operation was
selected based on the earliest completion time of
the machine required to process that operation. If
two or more machines had the same completion
time, one machine was randomly selected as the
assigned machine. In order to generate a schedule,
the operation-based approach [24] was employed.
The decoded individual was transformed into a
schedule by taking the first operation from the list
of operation sequences, then the second
operation, and so on. During the process of
generating a schedule, each operation was
allocated to an assigned machine having the
earliest completion time in the best available
without scheduled

position delaying other
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operations. This procedure resulted in completed
operation sequences with assigned machines which
yielded an active schedule, as shown in figures 3

and 4 respectively.

Dimension d 1 2 3 4 5
0.25 | 0.89 | 0.30 | 0.38 | 0.67
Job 1 2 1 1 2

machine 1 2 3 1 2

Figure 3 A sequence of operations with assigned

machines

M3

M2 Oz.1 022 |

M1 O

Figure 4 An active schedule after decoding

procedure

5. Computational Experiment

5.1 Parameter Setting

In this study, the number of function
evaluations was set as 100,000 in order to provide
a sufficient search process. Provided by the
number of function evaluations, the DE population
size and number of iterations were set as 200 and
500 respectively. After some preliminary studies,
the value of F was set to be uniformly randomized
between 15 and 25 in order to maintain
population diversity throughout the search process.
The value of the crossover rate (C,) was set as
linearly increased from 0.1 to 0.5 to preserve the
characteristic of the generated trial vectors at the
beginning of the search. As the search progressed,
the increasing value of C, provided more variations

for the generated trial vectors and helped the

solution to escape from being trapped at local

optima.

5.2 Numerical Results

The performance of the two adapted DE
algorithms was evaluated using three published
FJSP data sets: Kacem’s data [6],[7], Brandimarte’s
data [1], and Dauzere-Pere and Paulli’s data [3].
Seventeen instances with different problem sizes
were selected for the experiments, and each
instance was described according to problem size:
number of jobs (n) x number of machines (m) x
total number of operations (O). Tables 2 shows a
statistical comparison of the makespan obtained
from two adapted DE algorithms and 1ST-DE. It
should be noted that the numerical results
reported in the table were obtained from ten
independent runs.

It can be seen in Table 2 that most of the
solutions obtained from the two adapted DE
algorithms were equal to or better than the
solutions obtained from the 1ST-DE. For small-size
problems, all of the algorithms are capable of
finding optimal solutions and all algorithms
exhibited their robustness ability. When the
problem size increased, all of the algorithms were
able to generate good solutions. However, in
two modified DE

superior

larger-size  instances, the

algorithms  demonstrated results
compared to the 1ST-DE in terms of both the best
makespan value and average makepan value. The
better performances of the two adapted DE
algorithms were not a consequence of increased
computational time. In the two adapted DE
algorithms, the distinct features were the changes
in the mutation strategy; however, the main
evolution process remained the same. As a result,
the computing times of the two adapted DE
algorithms and 1ST-DE were not significantly

different.
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Table 2 Comparison of makespan between two adapted DE algorithms and the 1ST-DE

Best 1ST-DE DE with sub-grouping DE with strategy switching
Instance Size Known

Solution | Best Avg. SD Best Avg. SD Best Avg. SD

K01 8x8x27 14 14 14 0 14 14 0 14 14 0

K02 10 x 10 x 30 7 7 7 0 7 7 0 7 7 0

K03 15 x 10 x 56 11 11 11 0 11 11 0 11 11 0

MKO1 10 x 6 x 55 39 40 40 0 40 40 0 a0 40 0
MKO02 10 x 6 x 58 26 27 27.2 0.42 27 27.1 0.31 27 27.2 0.42
MKO5 | 15 x4 x 106 172 175 175.1 1.1 173 174.7 1.42 174 174.9 0.87
MKO6 |10 x 15 x 150 58 62 62.8 1.47 61 62.6 1.07 62 63 0.81
MKO7 |20 x 50 x 100 140 141 1434 0.69 142 143.8 0.78 140 143 1.24
MKO9 |20 x 10 x 203 307 307 307.3 0.94 307 307.5 0.84 307 307.6 1.26
MK10 |20 x 15 x 203 198 222 220.6 2.45 217 221.3 2.6 217 221.9 191
Ola 10 x 5 x 196 2530 2645 2689.2 | 29.63 2637 | 2674.7 | 26.77 2629 2665.7 | 23.67
0da 10 x 5 x 196 2555 2616 2652.7 14.79 2607 | 2640.2 | 21.59 2627 2667.6 | 22.39
07a 15 x 8 x 293 2396 2582 2609.8 | 31.72 2521 | 2584.6 | 37.40 2566 2601.7 | 22.75
09a 15 x 8 x 293 2074 2153 2153 10.25 2147 | 21551 | 6.52 2142 2151.1 9.13
11a 15 x 8 x 293 2078 2221 2240.1 8.71 2212 | 2233.7 | 17.89 2216 2236 12.20
16a 20 x 10 x 387 | 2301 2592 2580.5 | 27.07 2534 | 2572.4 | 23.45 2543 2579.5 | 25.63
18a 20 x 10 x 387 | 2139 2236 2219.9 6.98 2216 | 22252 | 5.67 2215 2224.1 6.83

6. Conclusions

This paper presents the implementation of
two adapted DE algorithms in order to minimize
makespan regarding the FJSP. The purposes of the
algorithms were to improve the performance of
the original DE by dynamically balancing
ability,

premature convergence, and thus increasing the

exploration and exploitation avoiding
chances to find better solutions. The performances
of the two adapted DE algorithms were assessed
on a set of benchmark problems and compared
with  the DE. The

numerical results showed that under the same

results from the original

experimental  conditions—the encoding and
decoding scheme, and population size and number
both modified DE

algorithms were quite competitive with the original

of iterations— in general,

DE in terms of solution quality, especially for the

large-size problems.

The ongoing studies have continued to

investigate  various techniques to improve
algorithm performance and robustness for solving a

wider range of optimization problems.
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